Oligonucleotide Analogues with Integrated Bases and Backbones

Part 23

Conformational Analysis and Association of Sulfonyl- and Sulfinylmethylene Adenosine and Uridine Dinucleosides

by Nicolas Bogliotti, Bruno Bernet, and Andrea Vasella*

Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (e-mail: vasella@org.chem.ethz.ch)

The sulfone **2**, and the sulfoxides (S)-**3** and (R)-**3** were obtained by oxidation of the thiomethylenelinked A*[s]U dinucleoside **1**. Conformational analysis and association studies of **2**, (S)-**3**, and (R)-**3** reveal a strong influence of the configuration on the conformation of the linking unit and on the selfassociation of the dinucleosides.

Introduction. – Oligoribonucleotide analogues integrating backbone and bases (ONIBs) are characterized by replacing the backbone of the parent oligonucleotide by a linker between the nucleobases. They form linear and/or cyclic duplexes, depending on the nature of the linking unit, the sequence of the nucleobases, and the substitution of C(6) of terminal U and C(8) of terminal A units [1-8]. The thiomethylene-linked self-complementary A*[s]U¹) dinucleoside **1** (*Scheme*) forms mainly linear associates in CHCl₃ solution [6]. Wondering about the influence of the oxidation state of the S-atom on the conformation of the linker and on the association of the resulting species, we decided to synthesise sulfone **2**, and the sulfoxides **3** and **4**.

Results and Discussion. – Synthesis of the Sulfone **2** and the Sulfoxides **3** and **4**. Catalytic oxidation of the sulfide **1** [6] in CH₂Cl₂ with aqueous H₂O₂ and Na₂WO₄ in the presence of NMe(C₈H₁₇)₃(HSO₄) [9] led, in a yield of 84%, to sulfone **2** (*Scheme*). Oxidation of **1** with NaIO₄ and separation of the products by flash chromatography gave the diastereoisomeric sulfoxides (*S*)-**3** (45%) and (*R*)-**3** (30%). Desilylation of (*S*)-**3** and (*R*)-**3** with (HF)₃·Et₃N yielded 78% of the alcohol (*S*)-**4** and 56% of the diastereoisomer (*R*)-**4**. Screening a number of solvents [10] failed to provide crystals of (*S*)-**4** and (*R*)-**4**, with (*S*)-**4** leading to a fibrous solid from MeOH, and gels or partial gels with acetone, butan-2-one, MeCN, AcOEt, and linear or branched alcohols (*Table 1*). Alcohol (*R*)-**4** was only soluble in DMF, DMSO, and 2,2,2-trifluoroethanol. It formed a partial gel in MeOH and proved insoluble in all other tested solvents.

Conventions for abbreviated notation: The substitution at C(6) of pyrimidines is denoted by an asterisk (*); for example, A* for hydroxymethylated adenosine. The moiety x linking C(8)-CH₂ of unit I and C(5') of unit I is indicated in square brackets, *i.e.*, [s] for a S-atom.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Scheme

TDS = Thexyl(dimethyl)silyl (= dimethyl(1,1,2-trimethylpropyl)silyl)

a) $Na_2WO_4 \cdot (H_2O)_2$, $MeN(C_8H_{17})_3(HSO_4)$, $PhPO(OH)_2$, 30% aq. H_2O_2/CH_2Cl_2 ; 84%. b) $NaIO_4$, $MeOH/H_2O/MeCN$; 45% of (S)-3, 30% of (R)-3. c) (HF)_3 \cdot Et_3N, THF; 78% of (S)-4; 56% of (R)-4.

The determination of the configuration of the diastereoisomeric sulfoxides **3** and **4** is based on the observation that solutions of 6-deoxy-6-[(S)-methylsulfinyl]glycopyranosides in CDCl₃ adopt the *gt*-conformation, whereas the (R)-configured diastereoisomers exist as a mixture of *gt*- and *tg*-conformers [11–13].

The *gt*-conformation and thus the (*S*)-configuration of (*S*)-**3** in CDCl₃ and of (*S*)-**4** in CDCl₃/CD₃OD 7:1 is evidenced by large J(4',5'a/I) values of 10.3 – 10.6 Hz with the more deshielded H_a – C(5'/I) and small J(4',5'b/I) values of 2.5 – 2.7 Hz (*Table 3* in the *Exper. Part*). A *ca.* 2:1 *gt/tg*-equilibrium of (*R*)-**3** and (*R*)-**4** is deduced from J(4',5'a/I) 7.6 – 7.7 and J(4',5'b/I) 3.3 – 4.5 Hz.

2. Association of the Sulfone 2, and the Sulfoxides 3 in CHCl₃. The self-association of the sulfone 2, and of the sulfoxides (S)-3 and (R)-3 was investigated by analyzing the concentration dependence of the chemical shift for H–N(3/I) (shift–concentration curve, SCC), and by analysing its temperature-dependence by ¹H-NMR and circular dichroism (CD) spectroscopy. The insolubility of the alcohols (S)-4 and (R)-4 in CHCl₃ did not allow investigating their self-association.

The SCCs of 2, (S)-3, and (R)-3 show a bending below 20 mM and a flattening above *ca*. 30 mM, but do not reach a plateau (*Fig. 1*). This evidences equilibria between

Class	Solvent	(<i>S</i>)- 4	(<i>R</i>)-4	
Aliphatic apolar ^b)	Hexane ^c)	Ι	Ι	
· · · ·	CCl_4	Ι	Ι	
Aromatic apolar	Toluene	Ι	Ι	
Electron-pair donor	Et_2O	Ι	Ι	
	<i>t</i> -BuOMe ^b)	Ι	Ι	
	1,4-Dioxane	S	Ι	
Aprotic dipolar	CH_2Cl_2	I ^d)	Ι	
	Acetone	PG	Ι	
	Butan-2-one	PG	Ι	
	ClCH ₂ CH ₂ Cl	S	Ι	
	MeCN	PG	Ι	
	AcOEt	PG	Ι	
Aprotic highly dipolar	DMF	S	S	
	DMSO	S	S	
H-Bonding	2,2,2-Trifluoroethanol	S	S	
-	MeOH	S ^e)	PG	
	EtOH	PG	Ι	
	PrOH	TG	Ι	
	BuOH	CG	Ι	
	i-PrOH	TG	Ι	
	t-BuOH	TG	Ι	
H-Bonding strongly associated	H ₂ O	Ι	Ι	
Miscellaneous	CHCl ₃	I ^d)	Ι	
	MeOCH ₂ CH ₂ OMe ^c)	S	Ι	
	THF°)	I ^d)	Ι	

Table 1. Solubility of the Dinucleosides (S)-4 and (R)-4 in Selected Solvents^a)

^a) [Dinucleoside] = 1% (*w*/*v*), I: insoluble, S: soluble, PG: partial gel, CG: clear gel, TG: turbid gel. ^b) Absent from *Chastrette*'s original classification [10]. ^c) Reclassified solvent. ^d) Soluble at the boiling temperature. ^e) At higher dinucleoside concentration, a fibrous solid was obtained upon cooling.

monoplexes, linear associates, and cyclic duplexes. The sulfoxide (S)-3 shows the largest proportion of cyclic duplexes, as evidenced by the strongest bending below 20 mM and the weakest increase of the downfield shift above 30 mM.

The SCCs of **2**, (*S*)-**3**, and (*R*)-**3** were analysed numerically by the method proposed by *Gutowsky* and *Saika* [14], including a value of 7.70 ppm for a 0.0001-mm solution, corresponding to the chemical shift of the monoplex, as deduced from $\delta(H-N(3))$ of monomeric uridine derivatives (*cf.* [6]). The association constants K_{ass} of the sulfoxides (*S*)-**3** (2556 M⁻¹; *Table 2*) and (*R*)-**3** (1965 M⁻¹), and of the sulfone **2** (552 M⁻¹) are distinctly larger than that of the sulfide **1** (225 M⁻¹ [6]). That (*S*)-**3** shows the highest association constant is expected, since already the monoplex adopts completely the required *gt*-orientation of the linker (see above). The calculated chemical-shift values for the cyclic duplexes (11.87–12.19 ppm) suggest similar mixtures of *Watson*–*Crick*- and *Hoogsteen*-type H-bonded cyclic duplexes for all three compounds. The $-\Delta H$ values decreasing from 16.9 for (*S*)-**3** to 14.4 for (*R*)-**3**, and to 10.3 kcal/mol for **2** reflect an increasing contribution of the monoplex rather than an increasing contribution of *Hoogsteen*-type base-paired cyclic duplexes.

Fig. 1. Shift-concentration curves (SCCs) of the sulfone **2**, and the sulfoxides (S)-**3** and (R)-**3** in CDCl₃ solution (including a value of 7.70 ppm for a 0.001-mm solution)

Table 2. Association Constants K_{ass} and Extrapolated Chemical Shifts of the Monoplexes and Duplexes from the Concentration Dependence of $\delta(HN(3))$ in CDCl₃ at 295 K for the $A^*[s]U^{(*)}$ Dinucleosides 2, (S)-3, and (R)-3 (including a value of 7.70 ppm for a 0.0001-mm solution). Thermodynamic Parameters by van't Hoff Analysis of the Temperature Dependence of $\delta(HN(3))$ for 7–10 mm Solutions in CDCl₃ at $10-50^{\circ}$.

Dimer	$K_{ m ass}$ [M ⁻¹]	$\delta_{ ext{monoplex}}{}^{ ext{a}})$ [ppm]	$\delta_{ ext{duplex}}{}^{ ext{b}})$ [ppm]	$-\Delta G_{295}^{ m c}$) [kcal/mol]	$-\Delta H$ [kcal/mol]	$-\Delta S$ [cal/mol K]
2	552	7.71	11.91	3.7	10.3	22.1
(S)- 3	2556	7.67	12.19	4.6	16.9	41.1
(R)- 3	1965	7.69	11.87	4.4	14.4	33.2

^a) Extrapolated for 0 mm. ^b) Extrapolated for infinite concentration. ^c) Calculated from K_{ass} .

CD Spectra were recorded for 1 mM CHCl₃ solutions of 2, (S)-3, and (R)-3 in the temperature range from 0 to 50° (*Fig. 2*). The sulfoxide (S)-3 shows both a strong ellipticity and a strong intensity decrease upon raising the temperature. This evidences the presence of a cyclic duplex favouring a fairly effective π -stacking of the base pairs. In the series of ethynyl-linked dinucleosides, a reverse-*Hoogsteen* base-paired cyclic duplex showed a distinctly stronger CD absorption than *Watson – Crick* base-paired cyclic duplexs [2], suggesting a dominant *Hoogsteen*-type base-paired cyclic duplex also for (S)-3. The CD spectra of 2, (S)-3, and (R)-3 show a stronger positive maximum at 250–270 than at 280–295 nm. This evidences a dominant proportion of cyclic duplexes possessing the same type of base pairing.

3. Conformation of the Sulfone 2, and the Sulfoxides 3 and 4. The ¹H-NMR spectra of 36-72-mM solutions of 2 and 3 in CDCl₃ reflect the equilibrium between linear

Fig. 2. Temperature-dependent CD spectra (in 10° steps from 0° to 50°) of 7–10-mM solutions in CHCl₃ of the sulform **2**, and the sulfoxides (S)-**3** and (R)-**3**

associates and cyclic duplexes, whereas the ¹H-NMR spectrum of **4** in CDCl₃/CD₃OD 7:1 is expected to reflect the conformation of the solvated monoplex²) (*Table 3* in the *Exper. Part*).

Unit I of **2** and (S)-**3** adopts completely a *syn*-conformation, as revealed by the chemical shifts for H-C(2'/I) (5.08 and 5.11 ppm, resp.). Although a small upfield shift for H-C(2'/I) ($\Delta \delta \approx 0.07$ ppm) of (S)-**4** may be taken to suggest a small contribution of the *anti*-conformer, it may also be a consequence of the different solvents. A similar chemical shift for H-C(1'/I) of the diastereoisomers of **3** and **4** ($\Delta \delta \leq 0.02$ ppm) indicates a similar preference for the *syn*-conformation. The upfield shift for H-C(2'/I) of (R)-**3** and (R)-**4** (4.90 and 4.91 ppm, resp.) must then be an indirect effect of the configurational change of the S-atom, and does not indicate a strong preference for the *anti*-conformer. This conclusion is supported by the observation that (R)-**3** shows a stronger preference than **2** for the formation of cyclic duplexes which require a *syn*-orientation of the uracil moiety. All these five compounds prefer a northern

²) The addition of 10% of CD₃OD was sufficient to completely break the cyclic duplexes of an ethynyl-linked self-complementary tetranucleoside in CDCl₃ solution [15].

conformation of the furanose ring of unit I (J(1',2'/I)/J(3',4'/I) = 0.3 - 0.4). As discussed above, (S)-3 and (S)-4 completely adopt a *gt*-conformation, and 2, (R)-3, and (R)-4 a *ca.* 2:1 *gt/tg*-equilibrium. Since *tg*-configured dinucleosides can only form linear associates, one expects a larger proportion of the *tg*-conformer for the self-associated 2 and (R)-3 than for the solvated (R)-4. This is indeed so, as revealed by the J(4',5'a/I)/J(4',5'b/I) ratios of 2.4, 2.3, and 1.7 for 2, (R)-3, and (R)-4, respectively. Since the size of J(4',5'a/I) and J(4',5'b/I) is influenced by the orientation of the O-atoms and the doubly occupied non-bonding orbitals of the S-atom [16], a quantitative determination of the rotameric equilibrium based on the equations given in [6] appears inadequate.

Unit II of the silyl ethers **2** and **3** adopts the expected *syn*-conformation, whereas the *syn*-conformation of unit II of the alcohols **4** is the consequence of the intramolecular $O-H \cdots N(3/II)$ H-bond. This H-bond is evidenced by the upfield shift of H-C(2'/II), the *gg*-orientation of the HOCH₂ group, and the southern (*S*) furanose ring conformation (*cf.* [2][6][17][18]). J(4',5'a/II) and J(4',5'b/II) = 2.0-2.8 Hz suggest a *ca.* 90% persistence of this H-bond in CDCl₃/CD₃OD 7:1. Surprisingly, the signals of H-C(1'/II) and H-C(2'/II) of (*R*)-**3** are shifted upfield by *ca.* 0.25 ppm as compared to those of **2** and (*S*)-**3**. A similar observation is made for the corresponding signals of (*R*)-**4** as compared to (*S*)-**4** ($\Delta \delta = 0.12$ for H-C(1'/II) and 0.2 ppm for H-C(2'/II)). The silyl ethers **2** and **3** prefer a (*N*)-conformation of the adenosine moiety and a *gt/tg*orientation of the TDSOCH₂ group.

Conclusions. – The (S)-configured sulfinylmethyl-linked A*[s]U dinucleoside (S)-3 adopts completely the *gt*-orientation of the linker required for pairing already as the monoplex, and shows a higher propensity than (R)-3 to form self-complementary cyclic duplexes. Similarly, (R)-3 and the sulfone 2 show both a stronger preference for the *gt*-conformation than the sulfide 1 (gt/(gg + tg) > 1.5 vs. 0.8) and a higher propensity to form cyclic duplexes. A stereoselective oxidation to the sulfoxides of thiomethylene-linked oligonucleosides is thus of considerable interest.

We thank Syngenta Ltd., Basel, for generous support.

Experimental Part

General and Evaluation of the Solubility. See [6] and [7].

5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-($8^{1} \rightarrow 5'$ -S)-5'deoxy-2',3'-O-isopropylidene-5'-sulfonyluridine (**2**). A mixture of **1** [6] (331 mg, 0.43 mmol), Na₂WO₄. (H₂O)₂ (1.4 mg, 4 µmol), NMe(C₈H₁₇)₃(HSO₄) [9] (2.0 mg, 4 µmol), PhPO(OH)₂ (0.7 mg, 4 µmol) in 30% aq. H₂O₂ (1 ml), and CH₂Cl₂ (1 ml) was vigorously stirred at 25° for 3 h. The mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (CH₂Cl₂/MeOH 95 :5) gave **2** (291 mg, 84%). White solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 95 :5) 0.29. M.p. 155° (dec.). [α]₂₅²⁵ = -6.1 (c = 1.1, CHCl₃). UV (CHCl₃): 262 (24170). IR (ATR): 3333w, 3193w, 2956w, 2867w, 1692s, 1639m, 1454w, 1375m, 1325m, 1252m, 1212m, 1156m, 1125m, 1080s, 971w, 935w, 829s. ¹H-NMR (300 MHz, CDCl₃): see *Table 3*; additionally, 7.25 (d, J = 7.9, H–C(6/I)); 5.66 (d, J = 7.9, H–C(5/I)); 1.60, 1.54, 1.40, 1.32 (4s, 2 Me₂C); 1.54 (*sept.*, J = 6.8, Me₂CH); 0.81 (d, J = 6.9, Me_{2} CH); 0.77, 0.76 (2s, Me₂CSi); -0.01, -0.04 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table 4*; additionally, 114.81, 114.15 (2s, 2 Me₂C); 34.16 (d, Me₂CH); 27.34, 27.16, 25.56, 25.40 (4q, 2 Me₂C); 25.35 (s, Me₂CSi); 20.41 (q, Me_{2} CSi); 18.57 (q, Me_{2} CH); -3.30, -3.33 (2q, Me₂Si). HR-MALDI-MS: 794.3221 ([M + H]⁺, C₃₄H₃₂N₇O₁₁SSi⁺; calc. 794.3215).

	2 36 mм	(<i>S</i>)- 3 72 mм	(<i>R</i>)- 3 66 mм	(<i>S</i>)- 4 161 mм	(<i>R</i>)- 4 108 mм
Uridine unit I					
H-N(3/I)	11.25	11.78	11.52	-	_
H-C(1'/I)	5.46	5.47	5.45	5.40	5.41
H-C(2'/I)	5.08	5.11	4.90	5.03	4.91
H-C(3'/I)	5.05	4.92	5.05	4.84	4.86
H-C(4'/I)	4.72	4.63	4.85	4.51	4.58
$H_{a} - C(5'/I)$	4.07	3.37	3.80	3.40	3.41
$H_{\rm h} - C(5'/I)$	3.63	3.01	3.39	3.14	3.29
J(1',2'/I)	1.1	1.1	1.7	1.3	1.4
J(2',3'/I)	6.4	6.3	6.5	6.3	6.5
J(3',4'/I)	3.7	3.8	3.8	4.0	3.6
$J(4',5_{a}'/I)$	8.3	10.3	7.7	10.6	7.6
$J(4',5_{\rm b}'/{\rm I})$	3.4	2.5	3.3	2.7	4.5
$J(5_{a}^{'},5_{b}^{'}/I)$	14.0	13.2	14.2	13.0	14.1
Adenosine unit (II)				
$H_2N-C(6/II)$	6.86	7.23	7.12	-	_
H-C(2/II)	8.29	8.32	8.22	7.94	8.04
$CH_a - C(8/II)$	5.01	4.80	4.56	4.45	4.46
$CH_{b}-C(8/II)$	4.78	4.30	4.56	4.36	4.26
H-C(1'/II)	6.30	6.43	6.13	5.99	5.87
H-C(2'/II)	5.99	5.98	5.74	5.25	5.06
H-C(3'/II)	5.07	5.14	5.00	5.01	4.92
H-C(4'/II)	4.23	4.23	4.23	4.34	4.31
$H_a - C(5'/II)$	3.66	3.58	3.77	3.78	3.78
$H_{\rm b}-C(5'/II)$	3.56	3.47	3.66	3.62	3.61
$J(H_a, H_b/II)$	15.3	14.4	a)	14.5	14.8
J(1',2'/II)	1.5	1.3	2.3	4.4	4.7
J(2',3'/II)	6.3	6.2	6.4	5.9	6.0
J(3',4'/II)	3.4	3.2	3.8	2.0	2.2
$J(4',5_{a}'/II)$	6.0	6.7	5.3	2.0	2.0
$J(4',5_{b}^{'}/II)$	6.5	6.6	7.3	2.8	2.6
$J(5'_{a},5'_{b}/II)$	10.8	10.5	10.9	12.6	12.6
^a) Not assigned.					

Table 3. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the A*[S]U Dinucleosides 2, (S)-3, and (R)-3 in CDCl₃, and (S)-4 and (R)-4 in CDCl₃/CD₃OD 7:1

Oxidation of **1** with NaIO₄. A soln. of **1** (5.500 g, 6.94 mmol) in MeOH/MeCN/H₂O 1:1:1 (300 ml) was treated with NaIO₄ (11.760 g, 55.5 mmol) and stirred for 32 h at 25°. The mixture was treated with sat. aq. Na₂S₂O₃ soln. (200 ml). The layers were separated, and the aq. layer was extracted three times with CH₂Cl₂ and once with AcOEt. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (CH₂Cl₂/MeOH 95:5 \rightarrow 9:1) gave (S)-**3** (2.425 g, 45%) and (R)-**3** (1.617 g, 30%).

Data of (S)-5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-($8^{l} \rightarrow 5'$ -S)-5'-deoxy-2',3'-O-isopropylidene-5'-sulfinyluridine ((S)-**3**). White solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 9:1) 0.33. M.p. 160–170°. [α]_D²⁵ = -5.6 (c = 1.3, CHCl₃). UV (CHCl₃): 264 (24710). IR (ATR): 3330w, 3193w, 2956w, 2868w, 1692s, 1634s, 1601w, 1454w, 1373s, 1331w, 1295w, 1253m, 1212m, 1156m, 1068s, 972w, 934w, 828s, 800m. ¹H-NMR (400 MHz, CDCl₃): see *Table 3*; additionally, 7.25 (d, J = 8.1, H–C(6/I)); 5.74 (d, J = 8.1, H–C(5/I)); 1.58, 1.50, 1.40, 1.30 (4s, 2 Me₂C); 1.52 (sept., J = 6.9, Me₂CH); 0.80 (d, d).

	2	(S)- 3	(<i>R</i>)-3	(<i>S</i>)-4	(<i>R</i>)- 4
Uridine unit I					
C(2/I)	150.78	151.30	150.41 ^a)	150.44	149.21
C(4/I)	164.24	163.88	164.61	164.56	164.02
C(5/I)	102.90	103.20	102.57	102.42	102.38
C(6/I)	144.09	143.85	143.74	144.18	143.47
C(1'/I)	97.48	97.75	96.06	97.24	96.12
C(2'/I)	84.26 ^a)	85.08	84.41	84.54	84.12
C(3'/I)	84.61 ^a)	84.56	84.55	84.00	83.99
C(4'/I)	83.57	83.39 ^a)	81.87 ^b)	83.09 ^a)	81.51 ^a)
C(5'/I)	55.65	55.70	53.10	56.29	52.56
Adenosine unit II					
C(2/II)	153.22	152.96	152.92	152.20	152.42
C(4/II)	150.33	150.54	149.90 ^a)	149.27	150.24
C(5/II)	119.15	118.39	118.71	118.95	118.96
C(6/II)	155.81	155.78	155.79	155.50	155.50
C(8/II)	141.60	143.62	144.49	142.56	142.66
$CH_2 - C(8/II)$	53.17	48.45	49.57	49.94	48.39
C(1'/II)	90.38	90.81	89.93	91.84	91.93
C(2'/II)	83.18	83.36 ^a)	82.97	82.21 ^a)	82.88
C(3'/II)	81.89	82.44	81.76 ^b)	81.26	81.23 ^a)
C(4'/II)	88.14	88.68	87.79	86.12	85.82
C(5'/II)	63.11	63.19	63.58	62.61	62.61
^a) ^b) Assignment i	may be interchang	ed.			

Table 4. Selected ¹³C-NMR Chemical Shifts [ppm] of the $A^*[s]U$ Dinucleosides 2, (S)-3, and (R)-3 in $CDCl_3$, and (S)-4 and (R)-4 in $CDcl_3OD$ 7:1

 $J = 6.9, Me_2CH); 0.75, 0.74 (2s, Me_2CSi); -0.05, -0.07 (2s, Me_2Si). {}^{13}C-NMR (100 MHz, CDCl_3): see Table 4; additionally 114.65, 113.77 (2s, 2 Me_2C); 34.20 (d, Me_2CH); 27.30, 27.12, 25.56, 25.39 (4q, 2 Me_2C); 25.31 (s, Me_2CSi); 20.40 (q, Me_2CSi); 18.59, 18.57 (2q, Me_2CH); -3.33 (q, Me_2Si). HR-MALDI-MS: 778.3247 ([M + H]⁺, C_{34}H_{52}N_7O_{10}SSi⁺; calc. 778.3266).$

Data of (R)-5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-(8' → 5'-S)-5'-deoxy-2',3'-O-isopropylidene-5'-sulfinyluridine ((R)-3). White solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 9:1) 0.26. M.p. 155 – 165°. $[\alpha]_{\rm D}^{25} = +37.0$ (c = 1.3, CHCl₃). UV (CHCl₃): 262 (25460). IR (ATR): 3329w, 3194w, 2956w, 2868w, 1692s, 1634s, 1601m, 1579w, 1454w, 1374m, 1331w, 1296w, 1252m, 1212m, 1156m, 1068s, 972w, 934w, 828s, 800m. ¹H-NMR (400 MHz, CDCl₃): see Table 3; additionally, 7.24 (d, J = 8.1, H−C(6/I)); 5.47 (d, J = 8.1, H−C(5/I)); 1.60, 1.54 1.38, 1.29 (4s, 2 Me₂C); 1.56 (sept, J = 6.9, Me₂CH); 0.79, 0.78 (2s, Me₂CSi); 0.04, 0.01 (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃): see Table 4; additionally 114.69, 114.43 (2s, 2 Me₂C); 34.19 (d, Me₂CH); 27.41, 27.15, 25.57, 25.37 (4q, 2 Me_2 C); 25.32 (s, Me₂CSi); 20.46, 20.43 (2q, Me_2 CSi); 18.61, 18.60 (2q, Me_2 CH); −3.17, −3.24 (2q, Me_2 Si). HR-MALDI-MS: 778.3267 ([M + H]⁺, C₃₄H₃₂N₇O₁₀SSi⁺; calc. 778.3266).

(S)-2',3'-O-Isopropylideneadenosine-8-methyl-($8^{1} \rightarrow 5'$ -S)-5'-deoxy-2',3'-O-isopropylidene-5'-sulfinyluridine ((S)-4). In a polyethylene flask, a soln. of (S)-3 (681 mg, 0.88 mmol) in THF (8 ml) was treated with a soln. of (HF)₃ · Et₃N (2.4 ml, 43.8 mmol) and stirred at 25° for 22 h. The mixture was diluted with MeOH/CH₂Cl₂ 1:1 (15 ml), treated with aq. 1M NaOH soln. until the pH reached *ca*. 10, and filtered (washing with H₂O). FC (CH₂Cl₂/MeOH 9:1) of the solid gave (S)-4 (432 mg, 78%). A sample for analysis was recrystallized in MeOH. White fibrous solid. R_f (CH₂Cl₂/MeOH 9:1) 0.23. M.p. 207° (dec.). $[\alpha]_{15}^{25} = +27.2$ (c = 2.4, DMSO). UV (CHCl₃/MeOH 7:1): 263 (27180). IR (ATR): 3328w, 3192w, 2986w, 2936w, 2815w, 1688s, 1637s, 1603m, 1579m, 1451m, 1374s, 1332m, 1297m, 1263m, 1211s, 1155m, 1062s, 1030s, 970m, 877m, 852s, 812m. ¹H-NMR (300 MHz, CDCl₃/CD₃OD 7:1): see *Table 3*; additionally, 7.24 (d, J = 8.1, H-C(6/I)); 5.60 (d, J = 8.1, H-C(5/I)); 1.53, 1.42 1.29, 1.22 ($4s, 2 Me_2C$). ¹³C-NMR (75 MHz, CDCl₃/CD₃OD 7:1): see *Table 4*; additionally 114.48, 114.28 ($2s, 2 Me_2C$); 27.28, 26.78, 25.09, 25.06 ($4q, 2 Me_2C$). HR-MALDI-MS: 658.1913 ([M + Na]⁺, C₂₆H₃₃N₇NaO₁₀S⁺; calc. 658.1907). Anal. calc. for C₂₆H₃₃N₇O₁₀S (635.65): C 49.13, H 5.23, N 15.42; found: C 49.25, H 5.26, N 14.93.

(R)-2',3'-O-Isopropylideneadenosine-8-methyl-(8^{*l*} → 5'-S)-5'-deoxy-2',3'-O-isopropylidene-5'-sulfinyluridine ((R)-4). In a polyethylene flask, a soln. of (R)-3 (1.065 g, 1.37 mmol) in THF (8 ml) was treated with a soln. of (HF)₃·Et₃N (3.7 ml, 68.5 mmol) and stirred at 25° for 22 h. The mixture was diluted with MeOH/CH₂Cl₂ 1:1 (15 ml), treated with aq. 5M NaOH soln. until the pH reached *ca*. 11, and filtered (washing with H₂O). FC (CH₂Cl₂/MeOH 9:1) of the solid gave (R)-4 (489 mg, 56%). White solid. $R_{\rm f}$ (CH₂Cl₂/MeOH 9:1) 0.23. M.p. 211° (dec.). $[\alpha]_{\rm D}^{25} = -92.5$ (*c* = 0.7, CHCl₃/MeOH 7:1). UV (CHCl₃/MeOH 7:1): 263 (20040). IR (ATR): 3460w, 3331w, 3197w, 2988w, 2932w, 1711s, 1693s, 1648s, 1605m, 1577w, 1484w, 1450m, 1374m, 1339m, 1310m, 1270m, 1253m, 1213s, 1157m, 1068s, 1029s, 965m, 942m, 921m, 905m, 879m, 869m, 847m, 801m. ¹H-NMR (300 MHz, CDCl₃/CD₃OD 7:1): see Table 3; additionally, 7.15 (*d*, *J* = 8.1, H−C(6/I)); 5.45 (*d*, *J* = 8.1, H−C(5/I)); 1.50, 1.41, 1.23, 1.19 (4s, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃/CD₃OD 7:1): see Table 4; additionally, 114.61, 114.35 (2s, 2 Me₂C); 27.25, 26.73, 25.00, 24.92 (4q, 2 Me₂C). HR-MALDI-MS: 658.1919 ([*M* + Na]⁺, C₂₆H₃₃N₇NaO₁₀S⁺; calc. 658.1907).

REFERENCES

- [1] S. Eppacher, N. Solladié, B. Bernet, A. Vasella, Helv. Chim. Acta 2000, 83, 1311.
- [2] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2006, 89, 2861.
- [3] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 864.
- [4] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 891.
- [5] A. J. Matthews, P. K. Bhardwaj, A. Vasella, Helv. Chim. Acta 2004, 87, 2273.
- [6] A. Ritter, D. Egli, B. Bernet, A. Vasella, Helv. Chim. Acta 2008, 91, 673.
- [7] N. Bogliotti, A. Ritter, S. Hebbe, A. Vasella, Helv. Chim. Acta 2008, 91, 2181.
- [8] N. Bogliotti, A. Vasella, Helv. Chim. Acta 2009, 92, 1167.
- [9] K. Sato, M. Hyodo, M. Aoki, X.-Q. Zheng, R. Noyori, *Tetrahedron* 2001, 57, 2469.
- [10] M. Chastrette, M. Rajzmann, M. Chanon, K. F. Purcell, J. Am. Chem. Soc. 1985, 107, 1.
- [11] P. H. Buist, B. Behrouzian, S. Cassel, C. Lorin, P. Rollin, A. Imberty, S. Pérez, *Tetrahedron: Asymmetry* 1997, 8, 1959.
- [12] H. Takayanagi, Y. Osa, T. Sato, H. Tsumuraya, K. Takeda, Y. Mizuno, *Chem. Pharm. Bull.* 1998, 46, 1321.
- [13] U. Grabowska, D. A. MacManus, K. Biggadike, M. I. Bird, S. Davies, T. Gallagher, L. D. Hall, E. N. Vulfson, *Carbohydr. Res.* 1998, 305, 351.
- [14] H. S. Gutowsky, A. Saika, J. Chem. Phys. 1953, 21, 1688.
- [15] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 792.
- [16] V. M. S. Gil, W. von Philipsborn, Magn. Reson. Chem. 1989, 27, 409.
- [17] P. K. Bhardwaj, A. Vasella, Helv. Chim. Acta 2002, 85, 699.
- [18] H. Gunji, A. Vasella, Helv. Chim. Acta 2000, 83, 2975.

Received January 6, 2010