Oligonucleotide Analogues with Integrated Bases and Backbones

Part 23

Conformational Analysis and Association of Sulfonyl- and Sulfinylmethylene Adenosine and Uridine Dinucleosides

by Nicolas Bogliotti, Bruno Bernet, and Andrea Vasella*

Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (e-mail: vasella@org.chem.ethz.ch)

The sulfone 2, and the sulfoxides (S) -3 and (R) -3 were obtained by oxidation of the thiomethylenelinked $A^*[s]$ U dinucleoside 1. Conformational analysis and association studies of 2, (S)-3, and (R)-3 reveal a strong influence of the configuration on the conformation of the linking unit and on the selfassociation of the dinucleosides.

Introduction. – Oligoribonucleotide analogues integrating backbone and bases (ONIBs) are characterized by replacing the backbone of the parent oligonucleotide by a linker between the nucleobases. They form linear and/or cyclic duplexes, depending on the nature of the linking unit, the sequence of the nucleobases, and the substitution of $C(6)$ of terminal U and $C(8)$ of terminal A units $[1-8]$. The thiomethylene-linked self-complementary $A^*[s]U^1$ dinucleoside 1 (*Scheme*) forms mainly linear associates in CHCl₃ solution [6]. Wondering about the influence of the oxidation state of the Satom on the conformation of the linker and on the association of the resulting species, we decided to synthesise sulfone 2, and the sulfoxides 3 and 4.

Results and Discussion. – Synthesis of the Sulfone 2 and the Sulfoxides 3 and 4. Catalytic oxidation of the sulfide 1 [6] in CH₂Cl₂ with aqueous H₂O₂ and Na₂WO₄ in the presence of $NMe(C_8H_{17})_3(HSO_4)$ [9] led, in a yield of 84%, to sulfone 2 (*Scheme*). Oxidation of 1 with NaIO_4 and separation of the products by flash chromatography gave the diastereoisomeric sulfoxides (S)-3 (45%) and (R)-3 (30%). Desilylation of (S)-3 and (R)-3 with $(HF)_{3} \cdot Et_{3}N$ yielded 78% of the alcohol (S)-4 and 56% of the diastereoisomer (R) -4. Screening a number of solvents [10] failed to provide crystals of (S) -4 and (R) -4, with (S) -4 leading to a fibrous solid from MeOH, and gels or partial gels with acetone, butan-2-one, MeCN, AcOEt, and linear or branched alcohols (Table 1). Alcohol (R) -4 was only soluble in DMF, DMSO, and 2,2,2-trifluoroethanol. It formed a partial gel in MeOH and proved insoluble in all other tested solvents.

¹) Conventions for abbreviated notation: The substitution at $C(6)$ of pyrimidines is denoted by an asterisk (*); for example, A^* for hydroxymethylated adenosine. The moiety x linking $C(8) - CH_2$ of unit II and $C(5')$ of unit I is indicated in square brackets, *i.e.*, [s] for a S-atom.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

TDS = Thexyl(dimethyl)silyl (= dimethyl(1,1,2-trimethylpropyl)silyl)

a) Na₂WO₄ · (H₂O)₂, MeN(C₈H₁₇)₃(HSO₄), PhPO(OH)₂, 30% aq. H₂O₂/CH₂Cl₂; 84%. *b*) NaIO₄ MeOH/H₂O/MeCN; 45% of (S)-3, 30% of (R) -3. c) (HF)₃ · Et₃N, THF; 78% of (S)-4; 56% of (R) -4.

The determination of the configuration of the diastereoisomeric sulfoxides 3 and 4 is based on the observation that solutions of 6-deoxy-6- $[(S)$ -methylsulfinyl]glycopyranosides in CDCl₃ adopt the *gt*-conformation, whereas the (R) -configured diastereoisomers exist as a mixture of gt - and tg -conformers [11 – 13].

The gt-conformation and thus the (S) -configuration of (S) -3 in CDCl₃ and of (S) -4 in CDCl₃/CD₃OD 7:1 is evidenced by large $J(4',5' a/I)$ values of 10.3 – 10.6 Hz with the more deshielded $H_a-C(5'/I)$ and small $J(4',5'b/I)$ values of 2.5–2.7 Hz (*Table 3* in the Exper. Part). A ca. 2:1 gt/tg-equilibrium of (R)-3 and (R)-4 is deduced from $J(4,5)a/I$) 7.6 – 7.7 and $J(4',5'b/I)$ 3.3 – 4.5 Hz.

2. Association of the Sulfone 2, and the Sulfoxides 3 in CHCl₃. The self-association of the sulfone 2, and of the sulfoxides (S) -3 and (R) -3 was investigated by analyzing the concentration dependence of the chemical shift for $H-N(3/I)$ (shift–concentration curve, SCC), and by analysing its temperature-dependence by ¹H-NMR and circular dichroism (CD) spectroscopy. The insolubility of the alcohols (S) -4 and (R) -4 in CHCl₃ did not allow investigating their self-association.

The SCCs of 2, (S) -3, and (R) -3 show a bending below 20 mm and a flattening above ca. 30 mm, but do not reach a plateau (Fig. 1). This evidences equilibria between

Scheme

Class	Solvent	$(S) - 4$	$(R) - 4$	
Aliphatic apolar ^b)	$Hexanec$)	I	I	
	CCl_4	I	I	
Aromatic apolar	Toluene	I	L	
Electron-pair donor	Et ₂ O	I	I	
	t -BuOMe ^b)	Ι	I	
	1,4-Dioxane	S	1	
Aprotic dipolar	CH ₂ Cl ₂	I^d	Ι	
	Acetone	PG	I	
	Butan-2-one	PG	I	
	$CICH_2CH_2Cl$	S	I	
	MeCN	PG	I	
	AcOE	PG	I	
Aprotic highly dipolar	DMF	S	S	
	DMSO	S	S	
H-Bonding	2,2,2-Trifluoroethanol	S	S	
	MeOH	S^e)	PG	
	EtOH	PG	I	
	PrOH	TG	L	
	BuOH	CG	Ι	
	i-PrOH	TG	1	
	t-BuOH	TG	L	
H-Bonding strongly associated	H ₂ O	I	Ι	
Miscellaneous	CHCl ₃	I^d	I	
	$MeOCH,CH,OMec$)	S	I	
	THF ^c	I^d	I	

Table 1. Solubility of the Dinucleosides (S) -4 and (R) -4 in Selected Solvents^a)

^a) [Dinucleoside] = 1% (w/v), I: insoluble, S: soluble, PG: partial gel, CG: clear gel, TG: turbid gel. ^b) Absent from *Chastrette'*s original classification [10]. ^c) Reclassified solvent. ^d) Soluble at the boiling temperature. e) At higher dinucleoside concentration, a fibrous solid was obtained upon cooling.

monoplexes, linear associates, and cyclic duplexes. The sulfoxide (S) -3 shows the largest proportion of cyclic duplexes, as evidenced by the strongest bending below 20 mm and the weakest increase of the downfield shift above 30 mm.

The SCCs of 2, (S) -3, and (R) -3 were analysed numerically by the method proposed by Gutowsky and Saika [14], including a value of 7.70 ppm for a 0.0001-mm solution, corresponding to the chemical shift of the monoplex, as deduced from $\delta(H-N(3))$ of monomeric uridine derivatives (*cf.* [6]). The association constants K_{ass} of the sulfoxides (S)-3 (2556 M^{-1} ; Table 2) and (R)-3 (1965 M^{-1}), and of the sulfone 2 (552 M⁻¹) are distinctly larger than that of the sulfide 1 (225 M⁻¹ [6]). That (S)-3 shows the highest association constant is expected, since already the monoplex adopts completely the required gt-orientation of the linker (see above). The calculated chemical-shift values for the cyclic duplexes $(11.87 - 12.19$ ppm) suggest similar mixtures of Watson-Crick- and Hoogsteen-type H-bonded cyclic duplexes for all three compounds. The $-\Delta H$ values decreasing from 16.9 for (S)-3 to 14.4 for (R)-3, and to 10.3 kcal/mol for 2 reflect an increasing contribution of the monoplex rather than an increasing contribution of Hoogsteen-type base-paired cyclic duplexes.

Fig. 1. Shift-concentration curves (SCCs) of the sulfone 2, and the sulfoxides (S)-3 and (R)-3 in CDCl₃ solution (including a value of 7.70 ppm for a 0.001-mm solution)

Table 2. Association Constants K_{ass} and Extrapolated Chemical Shifts of the Monoplexes and Duplexes from the Concentration Dependence of $\delta(HN(3))$ in CDCl₃ at 295 K for the A*[s]U^(*)) Dinucleosides 2, (S)-3, and (R)-3 (including a value of 7.70 ppm for a 0.0001-mm solution). Thermodynamic Parameters by van't Hoff Analysis of the Temperature Dependence of $\delta(HN(3))$ for 7–10 mm Solutions in CDCl₃ at $10 - 50^{\circ}$.

Dimer	$K_{\rm ass}$ $\lceil M^{-1} \rceil$	$\delta_{\text{monoplex}}^{\text{a}}$ [ppm]	$\delta_{\text{duplex}}^{b}$ [ppm]	$-\Delta G_{295}$ ^c) [kcal/mol]	$-\Delta H$ [kcal/mol]	$-\Delta S$ [cal/mol K]
$\overline{2}$	552	7.71	11.91	3.7	10.3	22.1
$(S) - 3$	2556	7.67	12.19	4.6	16.9	41.1
$(R) - 3$	1965	7.69	11.87	4.4	14.4	33.2

^a) Extrapolated for 0 mm. ^b) Extrapolated for infinite concentration. ^c) Calculated from K_{ass}

CD Spectra were recorded for 1 mm CHCl₃ solutions of 2, (S) -3, and (R) -3 in the temperature range from 0 to 50 $^{\circ}$ (Fig. 2). The sulfoxide (S)-3 shows both a strong ellipticity and a strong intensity decrease upon raising the temperature. This evidences the presence of a cyclic duplex favouring a fairly effective π -stacking of the base pairs. In the series of ethynyl-linked dinucleosides, a reverse-Hoogsteen base-paired cyclic duplex showed a distinctly stronger CD absorption than Watson-Crick base-paired cyclic duplexes [2], suggesting a dominant *Hoogsteen*-type base-paired cyclic duplex also for (S) -3. The CD spectra of 2, (S) -3, and (R) -3 show a stronger positive maximum at 250 – 270 than at 280 – 295 nm. This evidences a dominant proportion of cyclic duplexes possessing the same type of base pairing.

3. Conformation of the Sulfone 2, and the Sulfoxides 3 and 4. The ¹H-NMR spectra of 36–72-mm solutions of 2 and 3 in CDCl₃ reflect the equilibrium between linear

Fig. 2. Temperature-dependent CD spectra (in 10° steps from 0° to 50°) of 7–10-mm solutions in CHCl₃ of the sulfone 2, and the sulfoxides (S) -3 and (R) -3

associates and cyclic duplexes, whereas the 1 H-NMR spectrum of 4 in CDCl₃/CD₃OD 7:1 is expected to reflect the conformation of the solvated monoplex²) (*Table 3* in the Exper. Part).

Unit I of 2 and (S) -3 adopts completely a syn-conformation, as revealed by the chemical shifts for $H - C(2'/I)$ (5.08 and 5.11 ppm, resp.). Although a small upfield shift for $\rm H\!-\!C\rm(2'/I)$ ($\Delta\rm\delta\,{\approx}\,0.07$ ppm) of ($\rm S)$ -**4** may be taken to suggest a small contribution of the anti-conformer, it may also be a consequence of the different solvents. A similar chemical shift for H-C(1'/I) of the diastereoisomers of 3 and 4 ($\Delta\delta \le 0.02$ ppm) indicates a similar preference for the *syn*-conformation. The upfield shift for $H-C(2')I$ of (R) -3 and (R) -4 (4.90 and 4.91 ppm, resp.) must then be an indirect effect of the configurational change of the S-atom, and does not indicate a strong preference for the *anti*-conformer. This conclusion is supported by the observation that (R) -3 shows a stronger preference than 2 for the formation of cyclic duplexes which require a synorientation of the uracil moiety. All these five compounds prefer a northern

²) The addition of 10% of CD₃OD was sufficient to completely break the cyclic duplexes of an ethynyl-linked self-complementary tetranucleoside in CDCl₃ solution [15].

conformation of the furanose ring of unit I $(J(1',2'/I)/J(3',4'/I) = 0.3 - 0.4)$. As discussed above, (S) -3 and (S) -4 completely adopt a gt-conformation, and 2, (R) -3, and (R) -4 a ca. 2:1 gt/tg-equilibrium. Since tg-configured dinucleosides can only form linear associates, one expects a larger proportion of the tg-conformer for the self-associated 2 and (R) -3 than for the solvated (R) -4. This is indeed so, as revealed by the $J(4\prime,5\prime a/I)/$ $J(4',5')$ b/I) ratios of 2.4, 2.3, and 1.7 for 2, (R) -3, and (R) -4, respectively. Since the size of $J(4',5'a/\text{I})$ and $J(4',5'b/\text{I})$ is influenced by the orientation of the O-atoms and the doubly occupied non-bonding orbitals of the S-atom [16], a quantitative determination of the rotameric equilibrium based on the equations given in [6] appears inadequate.

Unit II of the silyl ethers 2 and 3 adopts the expected syn-conformation, whereas the syn-conformation of unit II of the alcohols 4 is the consequence of the intramolecular $O-H\cdots N(3/II)$ H-bond. This H-bond is evidenced by the upfield shift of $\mathrm{H}\mathrm{-}\mathrm{C}(2'/\mathrm{II})$, the gg -orientation of the HOCH_2 group, and the southern (S) furanose ring conformation (cf. [2] [6] [17] [18]). $J(4',5'a/II)$ and $J(4',5'b/II) = 2.0-2.8$ Hz suggest a ca. 90% persistence of this H-bond in $CDCl₃/CD₃OD 7:1$. Surprisingly, the signals of $H - C(1'/H)$ and $H - C(2'/H)$ of (R) -3 are shifted upfield by *ca*. 0.25 ppm as compared to those of 2 and (S) -3. A similar observation is made for the corresponding signals of (*R*)-4 as compared to (*S*)-4 ($\Delta\delta$ = 0.12 for H–C(1'/II) and 0.2 ppm for H–C(2'/II)). The silyl ethers 2 and 3 prefer a (N) -conformation of the adenosine moiety and a *gt/tg*orientation of the TDSOCH₂ group.

Conclusions. – The (S) -configured sulfinylmethyl-linked $A^*[s]$ U dinucleoside (S) -3 adopts completely the gt-orientation of the linker required for pairing already as the monoplex, and shows a higher propensity than (R) -3 to form self-complementary cyclic duplexes. Similarly, (R) -3 and the sulfone 2 show both a stronger preference for the *gt*conformation than the sulfide 1 (gt/(gg + tg) > 1.5 vs. 0.8) and a higher propensity to form cyclic duplexes. A stereoselective oxidation to the sulfoxides of thiomethylenelinked oligonucleosides is thus of considerable interest.

We thank Syngenta Ltd., Basel, for generous support.

Experimental Part

General and Evaluation of the Solubility. See [6] and [7].

 $5'-O$ -[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl-($8^I \rightarrow 5'$ -S)-5' $deoxy-2',3'-O-isopropylidene-5'-sulfonyluri-dine (2)$. A mixture of 1 [6] (331 mg, 0.43 mmol), Na₂WO₄ · $(H₂O)₂$ (1.4 mg, 4 µmol), NMe(C₈H₁₇)₃(HSO₄) [9] (2.0 mg, 4 µmol), PhPO(OH)₂ (0.7 mg, 4 µmol) in 30% aq. H₂O₂ (1 ml), and CH₂Cl₂ (1 ml) was vigorously stirred at 25° for 3 h. The mixture was diluted with H₂O and extracted with CH₂Cl₂. The combined org. layers were dried (Na₂SO₄) and evaporated. FC (CH₂Cl₂/MeOH 95:5) gave 2 (291 mg, 84%). White solid. R_f (CH₂Cl₂/MeOH 95:5) 0.29. M.p. 155^o (dec.). $\lbrack a\rbrack^2$ = -6.1 (c = 1.1, CHCl₃). UV (CHCl₃): 262 (24170). IR (ATR): 3333w, 3193w, 2956w, 2867w, 1692s, 1639m, 1454w, 1375m, 1325m, 1252m, 1212m, 1156m, 1125m, 1080s, 971w, 935w, 829s. ¹ H-NMR $(300 \text{ MHz}, \text{CDCl}_3)$: see Table 3; additionally, 7.25 $(d, J = 7.9, H - C(6/1))$; 5.66 $(d, J = 7.9, H - C(5/1))$; 1.60, 1.54, 1.40, 1.32 (4s, 2 Me₂C); 1.54 (sept., $J = 6.8$, Me₂CH); 0.81 (d, $J = 6.9$, Me₂CH); 0.77, 0.76 (2s, Me₂CSi); -0.01 , -0.04 (2s, Me₂Si). ¹³C-NMR (75 MHz, CDCl₃): see *Table 4*; additionally, 114.81, 114.15 (2s, 2 Me₂C); 34.16 (d, Me₂CH); 27.34, 27.16, 25.56, 25.40 (4q, 2 Me₂C); 25.35 (s, Me₂CSi); 20.41 (q, Me_2 CSi); 18.57 (q, Me₂CH); -3.30, -3.33 (2q, Me₂Si). HR-MALDI-MS: 794.3221 ([M + H]⁺, $C_{34}H_{52}N_7O_{11}SSi^+$; calc. 794.3215).

	$\overline{2}$ 36 m _M	$(S) - 3$ 72 m _M	$(R) - 3$ 66 m _M	$(S) - 4$ 161 mm	$(R) - 4$ 108 mm
Uridine unit I					
$H - N(3/I)$	11.25	11.78	11.52		
$H - C(1'/I)$	5.46	5.47	5.45	5.40	5.41
$H-C(2/I)$	5.08	5.11	4.90	5.03	4.91
$H - C(3'/I)$	5.05	4.92	5.05	4.84	4.86
$H - C(4'/I)$	4.72	4.63	4.85	4.51	4.58
$H_a - C(5'/I)$	4.07	3.37	3.80	3.40	3.41
$Hb-C(5/I)$	3.63	3.01	3.39	3.14	3.29
J(1',2'/I)	1.1	1.1	1.7	1.3	1.4
J(2',3'/I)	6.4	6.3	6.5	6.3	6.5
J(3',4'/I)	3.7	3.8	3.8	4.0	3.6
$J(4', 5'_a/\text{I})$	8.3	10.3	7.7	10.6	7.6
$J(4',5'_b/\text{I})$	3.4	2.5	3.3	2.7	4.5
$J(5_{a}^{\prime},5_{b}^{\prime}/I)$	14.0	13.2	14.2	13.0	14.1
Adenosine unit (II)					
$H_2N-C(6/II)$	6.86	7.23	7.12		
$H-C(2/II)$	8.29	8.32	8.22	7.94	8.04
$CHa-C(8/II)$	5.01	4.80	4.56	4.45	4.46
$CHb-C(8/II)$	4.78	4.30	4.56	4.36	4.26
$H-C(1'/H)$	6.30	6.43	6.13	5.99	5.87
$H-C(2'/H)$	5.99	5.98	5.74	5.25	5.06
$H-C(3'/H)$	5.07	5.14	5.00	5.01	4.92
$H - C(4'/H)$	4.23	4.23	4.23	4.34	4.31
$H_a-C(5'/H)$	3.66	3.58	3.77	3.78	3.78
$Hb-C(5'/II)$	3.56	3.47	3.66	3.62	3.61
$J(H_a,H_b/II)$	15.3	14.4	a)	14.5	14.8
$J(1',2'/\Pi)$	1.5	1.3	2.3	4.4	4.7
J(2',3'/H)	6.3	6.2	6.4	5.9	6.0
J(3',4'/II)	3.4	3.2	3.8	2.0	2.2
$J(4',5'_a/\text{II})$	6.0	6.7	5.3	2.0	2.0
$J(4',5'_b/\Pi)$	6.5	6.6	7.3	2.8	2.6
$J(5_{a}^{\prime},5_{b}^{\prime}/\Pi)$	10.8	10.5	10.9	12.6	12.6
^a) Not assigned.					

Table 3. Selected ¹H-NMR Chemical Shifts [ppm] and Coupling Constants [Hz] of the A*[s]U Dinucleosides 2, (S)-3, and (R)-3 in CDCl₃, and (S)-4 and (R)-4 in CDCl₃/CD₃OD 7:1

Oxidation of 1 with NaIO₄. A soln. of 1 (5.500 g, 6.94 mmol) in MeOH/MeCN/H₂O 1:1:1 (300 ml) was treated with NaIO₄ (11.760 g, 55.5 mmol) and stirred for 32 h at 25°. The mixture was treated with sat. aq. $Na_2S_2O_3$ soln. (200 ml). The layers were separated, and the aq. layer was extracted three times with CH₂Cl₂ and once with AcOEt. The combined org. layers were dried (Na₂SO₄) and evaporated. FC $(CH_2Cl_2/MeOH 95:5 \rightarrow 9:1)$ gave (S) -3 (2.425 g, 45%) and (R) -3 (1.617 g, 30%).

Data of (S)-5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl- $(8¹ \rightarrow 5¹-S)-5¹-deoxy-2',3'-O-isopropylidene-5's ulfinyluridine (S)-3).$ White solid. R_f (CH₂Cl₂/MeOH 9:1) 0.33. M.p. 160–170°. [α] $_{15}^{25}$ = -5.6 (c = 1.3, CHCl₃). UV (CHCl₃): 264 (24710). IR (ATR): 3330w, 3193w, 2956w, 2868w, 1692s, 1634s, 1601w, 1454w, 1373s, 1331w, 1295w, 1253m, 1212m, 1156m, 1068s, 972w, 934w, 828s, 800m. ¹H-NMR (400 MHz, CDCl₃): see *Table 3*; additionally, 7.25 (*d*, $J = 8.1$, H $- C(6/2)$ I)); 5.74 $(d, J = 8.1, H - C(5/1))$; 1.58, 1.50, 1.40, 1.30 $(4s, 2 \text{ Me}_2\text{C})$; 1.52 $(sept, J = 6.9, \text{Me}_2\text{CH})$; 0.80 $(d, J = 6.9, H - C(5/1))$; 1.58, 1.50, 1.40, 1.30 $(4s, 2 \text{ Me}_2\text{C})$; 1.52 $(sept, J = 6.9, \text{Me}_2\text{CH})$; 0.80 $(d, J = 6.9, H$

	$\mathbf{2}$	$(S) - 3$	$(R) - 3$	$(S) - 4$	$(R) - 4$
Uridine unit I					
C(2/I)	150.78	151.30	150.41^{a}	150.44	149.21
C(4/I)	164.24	163.88	164.61	164.56	164.02
C(5/I)	102.90	103.20	102.57	102.42	102.38
C(6/I)	144.09	143.85	143.74	144.18	143.47
C(1'/I)	97.48	97.75	96.06	97.24	96.12
C(2'/I)	$84.26a$)	85.08	84.41	84.54	84.12
C(3'/I)	$84.61a$)	84.56	84.55	84.00	83.99
C(4'/I)	83.57	$83.39a$)	$81.87b$)	$83.09^{\rm a}$)	$81.51a$)
C(5/I)	55.65	55.70	53.10	56.29	52.56
Adenosine unit II					
C(2/II)	153.22	152.96	152.92	152.20	152.42
C(4/II)	150.33	150.54	$149.90^{\rm a}$)	149.27	150.24
C(5/II)	119.15	118.39	118.71	118.95	118.96
C(6/II)	155.81	155.78	155.79	155.50	155.50
C(8/II)	141.60	143.62	144.49	142.56	142.66
$CH2-C(8/II)$	53.17	48.45	49.57	49.94	48.39
C(1'/II)	90.38	90.81	89.93	91.84	91.93
C(2'/II)	83.18	$83.36a$)	82.97	$82.21a$)	82.88
C(3'/II)	81.89	82.44	$81.76b$)	81.26	$81.23a$)
C(4'/H)	88.14	88.68	87.79	86.12	85.82
C(5'/II)	63.11	63.19	63.58	62.61	62.61
^a) b) Assignment may be interchanged.					

Table 4. Selected ¹³C-NMR Chemical Shifts [ppm] of the $A*|S/U$ Dinucleosides 2, (S)-3, and (R)-3 in CDCl₃, and (S)-4 and (R)-4 in CDCl₃/CD₃OD 7:1

 $J = 6.9, Me_2CH$; 0.75, 0.74 (2s, Me₂CSi); $-0.05, -0.07$ (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃): see Table 4; additionally 114.65, 113.77 (2s, 2 Me₂C); 34.20 (d, Me₂CH); 27.30, 27.12, 25.56, 25.39 (4q, 2) Me_2C); 25.31 (s, Me₂CSi); 20.40 (q, Me₂CSi); 18.59, 18.57 (2q, Me₂CH); -3.33 (q, Me₂Si). HR-MALDI-MS: 778.3247 ($[M + H]^+$, C₃₄H₅₂N₇O₁₀SSi⁺; calc. 778.3266).

Data of (R)-5'-O-[Dimethyl(1,1,2-trimethylpropyl)silyl]-2',3'-O-isopropylideneadenosine-8-methyl- $(8¹ \rightarrow 5¹-S)$ -5'-deoxy-2',3'-O-isopropylidene-5'-sulfinyluridine $((R)-3)$. White solid. R_f (CH₂Cl₂/MeOH) 9:1) 0.26. M.p. 155 – 165°. [a] $_5^\circ$ = + 37.0 ($c = 1.3$, CHCl₃). UV (CHCl₃): 262 (25460). IR (ATR): 3329w, 3194w, 2956w, 2868w, 1692s, 1634s, 1601m, 1579w, 1454w, 1374m, 1331w, 1296w, 1252m, 1212m, 1156m, 1068s, 972w, 934w, 828s, 800m. ¹H-NMR (400 MHz, CDCl₃): see *Table 3*; additionally, 7.24 (d, $J = 8.1$, $H-C(6/I)$; 5.47 (d, $J=8.1, H-C(5/I)$); 1.60, 1.54 1.38, 1.29 (4s, 2 Me₂C); 1.56 (sept., $J=6.9, Me_2CH$); 0.83 (d, $J = 6.9$, Me_2 CH); 0.79, 0.78 (2s, Me₂CSi); 0.04, 0.01 (2s, Me₂Si). ¹³C-NMR (100 MHz, CDCl₃): see Table 4; additionally 114.69, 114.43 (2s, 2 Me₂C); 34.19 (d, Me₂CH); 27.41, 27.15, 25.57, 25.37 (4q, $2 Me₂C$); 25.32 (s, Me₂CSi); 20.46, 20.43 (2q, Me₂CSi); 18.61, 18.60 (2q, Me₂CH); -3.17, -3.24 (2q, $Me₂Si$). HR-MALDI-MS: 778.3267 ([$M + H$]⁺, C₃₄H₅₂N₇O₁₀SSi⁺; calc. 778.3266).

 $(S)-2',3'-O-Isopropylideneadenosine-8-methyl-(8¹-5'-S)-5'-deoxy-2',3'-O-isopropylidene-5'-sulfinyl-¹$ uridine ((S)-4). In a polyethylene flask, a soln. of (S) -3 (681 mg, 0.88 mmol) in THF (8 ml) was treated with a soln. of $(HF)_{3} \cdot Et_{3}N$ (2.4 ml, 43.8 mmol) and stirred at 25° for 22 h. The mixture was diluted with MeOH/CH₂Cl₂ 1:1 (15 ml), treated with aq. 1m NaOH soln. until the pH reached ca. 10, and filtered (washing with H₂O). FC (CH₂Cl₂/MeOH 9:1) of the solid gave (S) -4 (432 mg, 78%). A sample for analysis was recrystallized in MeOH. White fibrous solid. R_f (CH₂Cl₂/MeOH 9 : 1) 0.23. M.p. 207° (dec.). $\lbrack \alpha]_D^{25}$ = +27.2 (c = 2.4, DMSO). UV (CHCl₃/MeOH 7:1): 263 (27180). IR (ATR): 3328w, 3192w, 2986w, 2936w, 2815w, 1688s, 1637s, 1603m, 1579m, 1451m, 1374s, 1332m, 1297m, 1263m, 1211s, 1155m, 1062s,

1030s, 970m, 877m, 852s, 812m. ¹H-NMR (300 MHz, CDCl₃/CD₃OD 7:1): see *Table 3*; additionally, 7.24 $(d, J = 8.1, H - C(6/I)); 5.60 (d, J = 8.1, H - C(5/I)); 1.53, 1.42 1.29, 1.22 (4s, 2 Me₂C).¹³C-NMR (75 MHz, 75.04)$ CDCl₃/CD₃OD 7:1): see Table 4; additionally 114.48, 114.28 (2s, 2 Me₂C); 27.28, 26.78, 25.09, 25.06 (4q, 2 Me₂C). HR-MALDI-MS: 658.1913 ($[M + Na]$ ⁺, C₂₆H₃₃N₇NaO₁₀S⁺; calc. 658.1907). Anal. calc. for $C_{26}H_{33}N_7O_{10}S$ (635.65): C 49.13, H 5.23, N 15.42; found: C 49.25, H 5.26, N 14.93.

(R)-2',3'-O-Isopropylideneadenosine-8-methyl-(81 ! 5'-S)-5'-deoxy-2',3'-O-isopropylidene-5'-sulfinyluridine $((R)-4)$. In a polyethylene flask, a soln. of $(R)-3$ (1.065 g, 1.37 mmol) in THF (8 ml) was treated with a soln. of (HF) ₃ · Et₃N (3.7 ml, 68.5 mmol) and stirred at 25° for 22 h. The mixture was diluted with MeOH/CH₂Cl₂ 1:1 (15 ml), treated with aq. 5M NaOH soln. until the pH reached ca. 11, and filtered (washing with H₂O). FC (CH₂Cl₂/MeOH 9:1) of the solid gave (R) -4 (489 mg, 56%). White solid. R_f (CH₂Cl₂/MeOH 9:1) 0.23. M.p. 211° (dec.). [α] $_{10}^{15}$ = $-$ 92.5 (c = 0.7, CHCl₃/MeOH 7:1). UV (CHCl3/MeOH 7 : 1): 263 (20040). IR (ATR): 3460w, 3331w, 3197w, 2988w, 2932w, 1711s, 1693s, 1648s, 1605m, 1577w, 1484w, 1450m, 1374m, 1339m, 1310m, 1270m, 1253m, 1213s, 1157m, 1068s, 1029s, 965m, 942m, 921m, 905m, 879m, 869m, 847m, 801m. ¹H-NMR (300 MHz, CDCl₃/CD₃OD 7:1): see *Table 3*; additionally, 7.15 $(d, J = 8.1, H - C(6/1))$; 5.45 $(d, J = 8.1, H - C(5/1))$; 1.50, 1.41, 1.23, 1.19 (4s, 2 Me₂C). ¹³C-NMR (75 MHz, CDCl₃/CD₃OD 7:1): see *Table 4*; additionally, 114.61, 114.35 (2s, 2 Me₂C); 27.25, 26.73, 25.00, 24.92 (4q, 2 Me₂C). HR-MALDI-MS: 658.1919 ($[M + Na]^+$, C₂₆H₃₃N₇NaO₁₀S⁺; calc. 658.1907).

REFERENCES

- [1] S. Eppacher, N. Solladié, B. Bernet, A. Vasella, *Helv. Chim. Acta* 2000, 83, 1311.
- [2] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2006, 89, 2861.
- [3] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 864.
- [4] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 891.
- [5] A. J. Matthews, P. K. Bhardwaj, A. Vasella, *Helv. Chim. Acta* 2004, 87, 2273.
- [6] A. Ritter, D. Egli, B. Bernet, A. Vasella, Helv. Chim. Acta 2008, 91, 673.
- [7] N. Bogliotti, A. Ritter, S. Hebbe, A. Vasella, Helv. Chim. Acta 2008, 91, 2181.
- [8] N. Bogliotti, A. Vasella, Helv. Chim. Acta 2009, 92, 1167.
- [9] K. Sato, M. Hyodo, M. Aoki, X.-Q. Zheng, R. Noyori, Tetrahedron 2001, 57, 2469.
- [10] M. Chastrette, M. Rajzmann, M. Chanon, K. F. Purcell, J. Am. Chem. Soc. 1985, 107, 1.
- [11] P. H. Buist, B. Behrouzian, S. Cassel, C. Lorin, P. Rollin, A. Imberty, S. Pérez, Tetrahedron: Asymmetry 1997, 8, 1959.
- [12] H. Takayanagi, Y. Osa, T. Sato, H. Tsumuraya, K. Takeda, Y. Mizuno, Chem. Pharm. Bull. 1998, 46, 1321.
- [13] U. Grabowska, D. A. MacManus, K. Biggadike, M. I. Bird, S. Davies, T. Gallagher, L. D. Hall, E. N. Vulfson, Carbohydr. Res. 1998, 305, 351.
- [14] H. S. Gutowsky, A. Saika, J. Chem. Phys. 1953, 21, 1688.
- [15] X. Zhang, B. Bernet, A. Vasella, Helv. Chim. Acta 2007, 90, 792.
- [16] V. M. S. Gil, W. von Philipsborn, Magn. Reson. Chem. 1989, 27, 409.
- [17] P. K. Bhardwaj, A. Vasella, *Helv. Chim. Acta* 2002, 85, 699.
- [18] H. Gunji, A. Vasella, Helv. Chim. Acta 2000, 83, 2975.

Received January 6, 2010